Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3736395

ABSTRACT

Efforts to develop and deploy effective vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continue at pace. Here we describe rational antigen design through to manufacturability and vaccine efficacy, of a prefusion-stabilised Spike (S) protein, Sclamp. This strategy uses an orthogonal stabilisation approach compared to canonical vaccines, in combination with the licensed adjuvant MF59 (Seqirus). In mice, the Sclamp vaccine elicits high levels of neutralising antibodies, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells in vivo. In the Syrian hamster challenge model (n = 70), vaccination results in reduced viral load within the lung, protection from pulmonary disease, and decreased viral shedding in daily throat swabs which correlated strongly with the neutralising antibody level. The Sclamp vaccine candidate is currently completing Phase 1 clinical evaluation, in parallel with large-scale commercial manufacture for pivotal efficacy trials and potential widespread distribution.Funding: This work was funded by CEPI.Conflict of Interest: K.J.C., D.W. and P.R.Y. are inventors of the “Molecular Clamp” patent, US 2020/0040042.


Subject(s)
Severe Acute Respiratory Syndrome
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-68892.v1

ABSTRACT

Efforts to develop and deploy effective vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continue at pace with more than 30 candidate vaccines now in clinical evaluation. Here we describe the preclinical development of an adjuvanted, prefusion-stabilised Spike (S) protein “Sclamp” subunit vaccine, from rational antigen design through to assessing manufacturability and vaccine efficacy. In mice, the vaccine candidate elicits high levels of neutralising antibodies to epitopes both within and outside the receptor binding domain (RBD) of S, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells. We also show protection in Syrian hamsters, which has emerged as a robust animal model for pulmonary SARS-CoV-2 infection. No evidence of vaccine enhanced disease was observed in animal challenge studies and pre-clinical safety was further demonstrated in a GLP toxicology study in rats. The Sclamp vaccine candidate is currently progressing rapidly through clinical evaluation in parallel with large-scale manufacture for pivotal efficacy trials and potential widespread distribution.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.24.169334

ABSTRACT

A major global effort is currently ongoing to search for therapeutics and vaccines to treat or prevent infection by the SARS-CoV-2 virus. Repurposing existing entities is one attractive approach. The heparan sulfate mimetic pixatimod is a clinical-stage synthetic sulfated compound that is a potent inhibitor of the glycosidase heparanase, and has known anti-cancer, anti-inflammatory and also antiviral properties. Here we show that pixatimod binds directly to the SARS-CoV-2 spike protein S1 receptor binding domain (RBD) and alters its conformation. Notably, this site overlaps with the known ACE2 binding site in the S1 RBD. We find that pixatimod inhibits binding of recombinant S1 RBD to Vero cells which express the ACE2 receptor. Moreover, in assays with three different isolates of live SARS-CoV-2 virus we show that pixatimod effectively inhibits viral infection of Vero cells. Importantly, its potency is well within its safe therapeutic dose range. These data provide evidence that pixatimod is a potent antiviral agent against SARS-CoV-2. Together with its other known activities this provides a strong rationale for its clinical investigation as a new multimodal therapeutic for the current COVID-19 pandemic.


Subject(s)
Neoplasms , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL